artificial neural networks - significado y definición. Qué es artificial neural networks
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es artificial neural networks - definición

COMPUTATIONAL MODEL USED IN MACHINE LEARNING, BASED ON CONNECTED, HIERARCHICAL FUNCTIONS
Neural net; Neural nets; Massive neural network; Neuralnets; Neuralnet; Artificial neural networs; Artificial neural networks; Artificial Neural Networks; Distributed representation; Nervous network; Nueral Network; Simulated neural network; Artificial Neural Network; Simulated Neural Network; Neural Network; Stochastic neural network; Present challenges in neural Networks; Problems in the verge of success in neural network research; Nervous Network; Bayesian neural network; Nueral networks; Neural network processor; Neural network processors; Neural computing; Neural circuitry; Neural Nets; Neural networks in robotics; Artificial neural net; Fuzzy neural networks; Neural network (computer); Neural network models; Neural network model; Models of neural network; Models of neural networks; Neural networks (computer); Aritificial Neuron Network; Computational network; History of Neural Networks; Convergent recursive learning algorithm; Deep stacking network; Tensor deep stacking network; Deep predictive coding networks; Applications of artificial neural networks; Neural network (artificial); Algorithms for training neural networks; Parameter (machine learning); Criticism of artificial neural networks; Self-learning in artificial neural network
  • An artificial neural network is an interconnected group of nodes, inspired by a simplification of [[neuron]]s in a [[brain]]. Here, each circular node represents an [[artificial neuron]] and an arrow represents a connection from the output of one artificial neuron to the input of another.
  • Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals
  • Confidence analysis of a neural network

Artificial neural network         
Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains.
artificial neural network         
<artificial intelligence> (ANN, commonly just "neural network" or "neural net") A network of many very simple processors ("units" or "neurons"), each possibly having a (small amount of) local memory. The units are connected by unidirectional communication channels ("connections"), which carry numeric (as opposed to symbolic) data. The units operate only on their local data and on the inputs they receive via the connections. A neural network is a processing device, either an algorithm, or actual hardware, whose design was inspired by the design and functioning of animal brains and components thereof. Most neural networks have some sort of "training" rule whereby the weights of connections are adjusted on the basis of presented patterns. In other words, neural networks "learn" from examples, just like children learn to recognise dogs from examples of dogs, and exhibit some structural capability for generalisation. Neurons are often elementary non-linear signal processors (in the limit they are simple threshold discriminators). Another feature of NNs which distinguishes them from other computing devices is a high degree of interconnection which allows a high degree of parallelism. Further, there is no idle memory containing data and programs, but rather each neuron is pre-programmed and continuously active. The term "neural net" should logically, but in common usage never does, also include biological neural networks, whose elementary structures are far more complicated than the mathematical models used for ANNs. See Aspirin, Hopfield network, McCulloch-Pitts neuron. Usenet newsgroup: news:comp.ai.neural-nets. (1997-10-13)
History of artificial neural networks         
ASPECT OF HISTORY
HIstory of artificial neural networks
The history of artificial neural networks (ANN) began with Warren McCulloch and Walter Pitts (1943) who created a computational model for neural networks based on algorithms called threshold logic. This model paved the way for research to split into two approaches.

Wikipedia

Artificial neural network

Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains.

An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron receives signals then processes them and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each neuron is computed by some non-linear function of the sum of its inputs. The connections are called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses that threshold.

Typically, neurons are aggregated into layers. Different layers may perform different transformations on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times.

Ejemplos de uso de artificial neural networks
1. The 16th international conference on artificial neural networks, «ICANN 2006,» to be held at the Holiday Inn Hotel, Athens.